

- 1 Rapid measurement of Watson-Crick to Hoogsteen exchange in unlabeled
- 2 DNA duplexes using high-power SELOPE imino ¹H CEST
- 3
- 4 Bei Liu¹, Atul Rangadurai¹, Honglue Shi², and Hashim M. Al-Hashimi^{*1,2}
- 5 1. Department of Biochemistry, Duke University School of Medicine, Durham, NC,
- 6 **USA**
- 7 2. Department of Chemistry, Duke University, Durham, NC, USA
- 8
- 9 *Correspondence to: <u>hashim.al.hashimi@duke.edu</u>
- 10

11	Abstract. In duplex DNA, Watson-Crick A-T and G-C base pairs (bps) exist in
12	dynamic equilibrium with an alternative Hoogsteen conformation, which is low in
13	abundance and short-lived. Measuring how the Hoogsteen dynamics varies
14	across different DNA sequences, structural contexts and physiological conditions
15	is key for understanding the role of these non-canonical bps in DNA recognition
16	and repair. However, such studies are hampered by the need to prepare $^{\rm 13}{\rm C}$ or
17	¹⁵ N isotopically enriched DNA samples for NMR relaxation dispersion (RD)
18	experiments. Here, using SELective Optimized Proton Experiments (SELOPE) ¹ H
19	CEST experiments employing high-power radiofrequency fields ($B_1 > 250$ Hz)
20	targeting imino protons, we demonstrate accurate and robust characterization of
21	Waston-Crick to Hoogsteen exchange, without the need for isotopic enrichment of
22	the DNA. For 13 residues in three DNA duplexes under different temperature and
23	pH conditions, the exchange parameters deduced from high-power imino ¹ H CEST
24	were in very good agreement with counterparts measured using off-resonance
25	13 C/ 15 N spin relaxation in the rotating frame ($R_{1\rho}$). It is shown that 1 H- 1 H NOE
26	effects which typically introduce artifacts in ¹ H based measurements of chemical
27	exchange can be effectively suppressed by selective excitation, provided that the
28	relaxation delay is short (\leq 100 ms). The ¹ H CEST experiment can be performed
29	with ~10X higher throughput and ~100X lower cost relative to $^{13}C/^{15}N$ R_{1p} , and
30	enabled Hoogsteen chemical exchange measurements undetectable by $R_{1\rho}$. The

- 31 results reveal an increased propensity to form Hoogsteen bps near terminal ends
- 32 and a diminished propensity within A-tract motifs. The ¹H CEST experiment opens
- 33 the door to more comprehensively characterizing Hoogsteen breathing in duplex
- 34 DNA.

35 **1** Introduction

- Soon after the discovery of the DNA double helix, it was shown that A-T and G-C
 could also pair in an alternative conformation known as the "Hoogsteen" base pair
 (bp) (Felsenfeld et al., 1957; Hoogsteen, 1959) (Fig. 1a). Starting from a canonical
- 39 Watson-Crick G-C or A-T bp, the corresponding Hoogsteen bp can be obtained by
- 40 $\,$ flipping the purine base 180° and bringing the two bases into proximity to create a
- 1 new set of hydrogen-bonds, which in the case of G-C bps require protonation of
- 42 cytosine-N3 (Fig. 1a).
- 43

Figure 1. Using ¹H CEST to measure Watson-Crick to Hoogsteen exchange 45 in unlabeled nucleic acid duplexes. (a) Watson-Crick G-C and A-T bps in B-46 DNA exist in dynamic equilibrium with G-C⁺ and A-T Hoogsteen bps, respectively. 47 Filled green circles denote nuclei (¹³C and ¹⁵N) that have previously been used to 48 49 probe the Watson-Crick to Hoogsteen exchange via RD measurements, while the 50 yellow circle denotes the imino ¹H probes used in this study. Rate constants and populations were obtained as described previously (Alvey et al., 2014). (b) The 511D SELOPE ¹H CEST pulse sequence for characterizing chemical exchange in 52 unlabeled nucleic acids. Narrow and wide filled rectangles denote 90° and 180° 53

54 hard pulses. Semi-oval shapes denote selective pulses. Pulse a is a 90° 55 Eburp2.1000 shape pulse (typically 4 ms) for selective excitation of imino protons, while pulse **b** is a 180° Squa100.1000 shape pulse with length 2 ms in an excitation 56 sculpting scheme (Hwang and Shaka, 1995) for water suppression. Open 5758 rectangles denote the gradients and heat compensation elements. Delay $\tau = \frac{1}{2}$ d_1 . To ensure uniform heating for experiments with variable lengths of T_{EX} , the 59 60 relaxation period during which a ¹H B_1 field is applied, two heat compensation 61 modules were used according to a prior study (Schlagnitweit et al., 2018). The first heat compensation is applied far off-resonance with duration = T_{Max} - T_{EX} = 2 62 ms, where T_{Max} is the maximum relaxation delay time. The second heat 63 64 compensation (1 kHz) applied far off-resonance has a duration T_{h2} = 150 ms. The phase cycles used are $\phi_1 = \{8x, 8(-x)\}, \phi_2 = \{4x, 4(-x)\}, \phi_3 = \{x, y\}, \phi_4 = \{-x, -y\}, \phi_5 = \{x, y\}, \phi_4 = \{-x, -y\}, \phi_5 = \{x, y\}, \phi_6 = \{x, y\}, \phi_8 =$ 65 66 $\{2x, 2y\}$, and $\phi_6 = \{2(-x), 2(-y)\}$. Gradients (g1 - g5) with SMSQ10.100 profiles are applied for 1 ms with the following amplitudes (G cm⁻¹): 14.445, 26.215, 14.445, 67 68 16.585, 5.885. Briefly, imino ¹H magnetization is selectively excited, aligned longitudinally and then relaxes under a ¹H B_1 field during T_{EX} . ¹H transverse 69 70 magnetization is then created and directly detected following water suppression. 71 This pulse sequence is adapted from Schlagnitweit et al., 72 2018).

74	Following their discovery, Hoogsteen bps were observed in crystal structures of
75	duplex DNA in complex with proteins (Kitayner et al., 2010; Aishima et al., 2002)
76	and drugs (Wang et al., 1984; Ughetto et al., 1985) and shown to play roles in DNA
77	recognition (Golovenko et al., 2018), damage induction (Xu et al., 2020), and
78	repair (Lu et al., 2010), and in damage bypass during replication (Nair et al., 2006;
79	Ling et al., 2003). NMR relaxation dispersion (RD) studies employing off-
80	resonance ¹³ C and ¹⁵ N spin relaxation in the rotating frame ($R_{1\rho}$) later showed that
81	the G-C and A-T Watson-Crick bps exist in a dynamic equilibrium with their
82	Hoogsteen counterparts (Nikolova et al., 2011). The Hoogsteen bps were shown
83	to be lowly populated (population < 1 %) and short-lived (lifetime \sim 1 ms) forming
84	robustly as an excited conformational state (ES) in duplex DNA across a variety of
85	sequence contexts (Alvey et al., 2014) (Fig. 1a).

86

There is growing interest in mapping the Watson-Crick to Hoogsteen exchange landscape cross different DNA contexts, including for bps in different sequence motifs (Alvey et al., 2014), near sites of damage and mismatches (Shi et al., 2021; Singh et al., 1993), and when DNA is bound to proteins (Nikolova et al., 2013b; Zhou et al., 2019) and drugs (Xu et al., 2018; Wang et al., 1984). Studies suggest an increased propensity to form Hoogsteen bps in such environments (Shi et al., 2021) and this may in turn play roles in DNA recognition and damage repair (Afek

94	et al., 2020). Furthermore, there is interest in understanding how the Hoogsteen
95	exchange varies with temperature (Nikolova et al., 2011), pH (Nikolova et al.,
96	2013a), salt concentration and buffer composition (Rangadurai et al., 2020b;
97	Tateishi-Karimata et al., 2014), as well as in the presence of epigenetic
98	modifications (Wang et al., 2017; Rangadurai et al., 2019a), all of which could
99	shape these dynamics and consequently DNA biochemical transactions.

There are hundreds and thousands of motifs and conditions for which 101 102 characterization of Hoogsteen dynamics is of biological interest. However, current 103 approaches for measuring Hoogsteen dynamics are ill-suited for dynamics 104 measurements at such a scale. The Watson-Crick to Hoogsteen chemical exchange process has been characterized with the use of ¹³C (Nikolova et al., 105 106 2011; Shi et al., 2018; Ben Imeddourene et al., 2020; Alvey et al., 2014) and ¹⁵N 107 (Nikolova et al., 2012a; Rangadurai et al., 2019a; Alvey et al., 2014) off-resonance 108 R_{1p} , and more recently chemical exchange saturation transfer (CEST) experiments 109 (Rangadurai et al., 2020b; Rangadurai et al., 2020a). However, these approaches 110 require isotopically enriched DNA samples, making broad explorations of 111 Hoogsteen exchange across even tens of motifs impractical. Furthermore, many 112 motifs of interest involve damaged or modified nucleotides, which are difficult to 113isotopically enrich with ¹³C and ¹⁵N nuclei. It is for this reason that we turned our

- 114 attention to the imino ¹H as a probe of the Watson-Crick to Hoogsteen exchange
- in unlabeled DNA samples.
- 116

117	The utility of protons as probes in CEST (Chen et al., 2016; Dubini et al., 2020;
118	Wang et al., 2021; Liu et al., 2020), Carr-Purcell-Meiboom-Gill (CPMG) (Juen et
119	al., 2016; Leblanc et al., 2018), and off-resonance $R_{1\rho}$ experiments (Wang and
120	Ikuta, 1989; Lane et al., 1993; Steiner et al., 2016; Schlagnitweit et al., 2018;
121	Baronti et al., 2020; Furukawa et al., 2021) to study conformational exchange in
122	nucleic acids is now well-established. Many of these ¹ H based approaches use
123	experiments originally developed to study conformational exchange in proteins
124	(Ishima et al., 1998; Eichmuller and Skrynnikov, 2005; Lundstrom and Akke, 2005;
125	Lundstrom et al., 2009; Otten et al., 2010; Bouvignies and Kay, 2012; Hansen et
126	al., 2012; Weininger et al., 2012; Weininger et al., 2013; Smith et al., 2015; Sekhar
127	et al., 2016; Yuwen et al., 2017a; Yuwen et al., 2017b). The ¹ H experiments permit
128	the use of higher effective fields allowing characterization of conformational
129	exchange faster than is possible using 13 C or 15 N experiments (Steiner et al., 2016;
130	Palmer, 2014). Furthermore, the relationship between ¹ H chemical shifts and
131	structure is reasonably well understood and has been exploited in the
132	conformational characterization of nucleic acids (Sripakdeevong et al., 2014;

- 133 Frank et al., 2013; Wang et al., 2021; Swails et al., 2015; Czernek et al., 2000;
- 134 Lam and Chi, 2010).
- 135

Recently, ¹H R₁ and CEST SELective Optimized Proton Experiments (SELOPE) 136137 were developed and applied to characterize conformational exchange in unlabeled RNA (Schlagnitweit et al., 2018). The SELOPE experiment has already found 138 139 several applications in studies of unlabeled nucleic acids, including in the 140 characterization of fast ($k_{ex} = k_1 + k_{-1} > 1,000 \text{ s}^{-1}$) RNA secondary structural 141 rearrangements (Baronti et al., 2020) and DNA base opening (Furukawa et al., 142 2021), as well as slower ($k_{ex} < 100 \text{ s}^{-1}$) DNA hybridization kinetics (Dubini et al., 143 2020). Many ¹H relaxation dispersion (RD) studies have targeted exchangeable imino protons (Baronti et al., 2020; Furukawa et al., 2021), taking advantage of the 144 145well-known dependence of the imino ¹H chemical shifts on secondary structure (Wang et al., 2021; Lam and Chi, 2010). 146

147

Although ¹H RD experiments can obviate the need for isotopic labeling and offer other advantages such as high sensitivity, they have not been as widely used compared to ¹³C/¹⁵N RD experiments. One reason for this has to do with potential artifacts arising due to from ¹H-¹H cross relaxation (Ishima et al., 1998; Eichmuller and Skrynnikov, 2005; Lundstrom and Akke, 2005; Bouvignies and Kay, 2012).

153	Interestingly, in nucleic acids, such NOE effects appear to be effectively
154	suppressed in the ¹ H SELOPE experiment through selective excitation of spins
155	(Schlagnitweit et al., 2018). The exchange parameters obtained using ¹ H SELOPE
156	experiments were shown to be in very good agreement with counterparts obtained
157	using ¹³ C and ¹⁵ N off-resonance $R_{1\rho}$ (Baronti et al., 2020). In addition, similar
158	exchange parameters were obtained when using variable tilt angles in $R_{1\rho}$
159	experiments, including tilt angle of 35.3° in which ROE and NOE cross-relaxation
160	terms cancel (Eichmuller and Skrynnikov, 2005; Weininger et al., 2013; Steiner et
161	al., 2016). No NOE dips or artifacts were observed in the majority of the ¹ H CEST
162	or off-resonance $R_{1\rho}$ profiles (Steiner et al., 2016; Dubini et al., 2020; Furukawa et
163	al., 2021). These results are consistent with a prior off-resonance ¹ H $R_{1\rho}$ studies
164	showing that even without deuteration, it is feasible to effectively suppress cross-
165	relaxation between amide and aliphatic protons through selective inversion of
166	amide protons and use of short spin lock relaxation delays (Lundstrom and Akke,
167	2005; Schlagnitweit et al., 2018). Nevertheless, NOE effects have been reported
168	for select sites in ¹ H SELOPE studies of nucleic acids (Schlagnitweit et al., 2018),
169	and in ¹ H CEST studies of proteins (Bouvignies and Kay, 2012; Sekhar et al., 2016;
170	Yuwen et al., 2017a; Yuwen et al., 2017b). This underscores the need to carefully
171	analyze NOE effects, especially for unlabeled samples, in which spin-state-

- selective magnetization transfer schemes (Yuwen et al., 2017a; Yuwen et al.,
- 173 2017b) employing heteronuclei to suppress NOE effects are not feasible.
- 174

175	There are certain conditions in which the Hoogsteen bp becomes the dominant
176	conformation in duplex DNA. These include chemically modified bases (Nikolova
177	et al., 2011), when DNA is in complex with binding partners (Xu et al., 2018), and
178	for specific sequence contexts under certain experimental conditions (Stelling et
179	al., 2017). Based on NMR studies of such duplexes containing Hoogsteen bps,
180	there should be a sizeable difference ($\Delta \omega \sim -12$ ppm) between the imino proton
181	chemical shifts of guanine (G-H1) and thymine (T-H3) in the Hoogsteen versus
182	Watson-Crick conformation. These differences should render G-H1 and T-H3
183	suitable probes of Hoogsteen exchange in unlabeled DNA duplexes provided that
184	NOE effects can be effectively suppressed. Imino protons are also attractive
185	probes given that they are often well-resolved even in 1D 1 H spectra of large RNAs.
186	

Here, we show that high power ¹H CEST SELOPE experiments targeting the imino protons G-H1 and T-H3 provide facile means for measuring Watson-Crick to Hoogsteen exchange of G-C and A-T bps in DNA without the need for isotopic enrichment. NOE effects are shown to have a negligible contribution as short $(\leq 100 \text{ ms})$ relaxation delays can be used to characterize the relatively fast ($k_{ex} \sim$

192	500 to 8,000 s ⁻¹) Watson-Crick to Hoogsten exchange process (Alvey et al., 2014).
193	The approach also takes advantage of high-power radio-frequency (RF) fields
194	recently shown (Rangadurai et al., 2020a) to extend the timescale sensitivity of
195	CEST to include faster exchange processes that traditionally are more effectively
196	characterized with the use of $R_{1\rho}$. The high-power ¹ H CEST experiment also
197	enabled measurement of fast Hoogsteen exchange kinetics ($k_{ex} > 20,000 \text{ s}^{-1}$)
198	inaccessible to conventional ¹³ C or ¹⁵ N off-resonance $R_{1\rho}$ RD. The ¹ H CEST
199	experiment opens the door to more comprehensively and systematically exploring
200	how the Watson-Crick to Hoogsteen exchange process varies with sequence and
201	structural contexts, and physiological conditions of interest.
202	

203 2 Results

204 **2.1** Assessment of NOE effects

205	We used the SELOPE (Schlagnitweit et al., 2018) experiment (Fig. 1b) to measure
206	^1H CEST profiles for G-H1 and T-H3 in unlabeled DNA duplexes (Fig. 2) at 25 °C-
207	26 °C. We used ¹ H CEST rather than $R_{1\rho}$ given the greater ease of collecting
208	profiles for many spins simultaneously, and given that with the use of high-power
209	RF fields, CEST can effectively characterize exchange processes over a wide
210	range of timescales (Rangadurai et al., 2020a). Use of high power RF fields was
211	recently shown to be important to effectively characterize the comparatively fast
212	($k_{ex} \sim 3,000 \text{ s}^{-1}$) Watson-Crick to Hoogsteen exchange process using ¹³ C and ¹⁵ N
213	CEST experiments (Rangadurai et al., 2020a). Here, we also employed high
214	power RF fields (> 250 Hz) to optimally characterize Watson-Crick to Hoogsteen
215	exchange using ¹ H CEST.

218	Figure 2. DNA and RNA duplexes used in this study. Also shown are 1D 1 H
219	spectra of the imino region. The buffer conditions were 25 mM sodium chloride,
220	15 mM sodium phosphate, 0.1 mM EDTA and 10 % D_2O . The pH and temperature
221	are indicated on each spectrum.
222	
223	
224	An important consideration when performing ¹ H CEST experiments are
225	contributions due to ¹ H- ¹ H cross-relaxation, which may give rise to extraneous
226	NOE dips in the ¹ H CEST profiles (Ishima et al., 1998; Lundstrom and Akke, 2005;
227	Eichmuller and Skrynnikov, 2005; Bouvignies and Kay, 2012; Sekhar et al., 2016;
228	Yuwen et al., 2017a; Yuwen et al., 2017b). These contributions have been
229	suppressed in proteins through deuteration (Eichmuller and Skrynnikov, 2005;
230	Lundstrom and Akke, 2005; Lundstrom et al., 2009; Otten et al., 2010; Hansen et
231	al., 2012; Weininger et al., 2012), and in ¹⁵ N isotopically labelled proteins (Yuwen
232	et al., 2017a; Yuwen et al., 2017b) and nucleic acids (Wang et al., 2021; Liu et al.,
233	2020) using spin-state-selective magnetization transfer schemes, and through
234	selective inversion of protons combined with use of short relaxation times
235	(Lundstrom and Akke, 2005; Schlagnitweit et al., 2018).

237	In the SELOPE experiment, imino protons are selectively excited and the
238	magnetization belonging to non-imino protons is dephased prior to application of
239	the B_1 field. This helps to suppress cross-relaxation (Yamazaki et al., 1994)
240	between the imino and non-imino protons (vide infra). In addition, because the
241	Watson-Crick to Hoogsteen exchange is relatively fast with $k_{ex} = \sim 500 - 8000 \text{ s}^{-1}$
242	at 25 °C (Alvey et al., 2014), we could afford to use a relatively short relaxation
243	delay of 100 ms which also helped minimize NOE effects (vide infra) (Lundstrom
244	and Akke, 2005; Schlagnitweit et al., 2018).

We initially performed experiments to evaluate contributions from ¹H-¹H cross-246 247 relaxation to the imino ¹H CEST profiles. In canonical B-form DNA and A-form RNA duplexes (Fig. 2), G-H1 is in closest proximity to the partner base C-H4a 248 249 (~2.4 Å, Fig. 3a), while T/U-H3 is in closest proximity to the partner A-H2 (~2.8 Å, 250 Fig. 3a). Additional proximal protons include imino and H2 protons of neighboring 251residues (~3.5-3.6 Å, Fig. 3a). These short internuclear distances are reflected in 252 the intensity of cross peaks in 2D [¹H, ¹H] NOESY spectra of nucleic acid duplexes (Fig. 3b and Fig. S1). Note that although the amino proton of G-H2a is in proximity 253(2.2 Å) to G-H1, while the amino proton of A-H6a is in proximity (2.4 Å) to the 254partner T-H3 (Fig. 3a), these amino protons are typically not observable in 1D ¹H 255

- 256 or 2D [¹H,¹H] NOESY spectra caused by intermediate exchange due to the
- restricted rotation around the C-NH₂ bond (Schnieders et al., 2019).
- 258

Figure 3. Analyzing NOE effects in ¹H CEST profiles. (a) Distances between 260 the imino protons of G2-H1 and T5-H3 and nearby protons in the A₆-DNA duplex 261262 (PDBID: 5UZF). Note that although the amino proton of G-H2a is in proximity (2.2 Å) to G-H1, while the amino proton of A-H6a is in proximity (2.4 Å) to the partner 263 T-H3, these amino protons are not observable in 1D ¹H or 2D [¹H,¹H] NOESY 264 265spectra caused by intermediate exchange due to the restricted rotation around the 266 C-NH₂ bond (Schnieders et al., 2019). (b) NOE dips in ¹H CEST profiles for G2-H1 and T5-H3 in A₆-DNA. The NOE diagonal and cross peaks for G2-H and T5-267

268	H3 in the 2D [¹ H, ¹ H] NOESY spectra with mixing time 100 ms (blue) and 400 ms
269	(red) are shown on the top. The ¹ H CEST profiles for G2-H1 and T5-H3 with
270	combinations of short (100 ms) and long (400 ms) relaxation delays, with and
271	without selective excitation (Methods) are shown at the bottom. The ES frequency
272	(black) obtained from fitting ¹ H CEST profiles with selective excitation and short
273	relaxation delay (100 ms) as well as frequency positions corresponding to the NOE
274	cross peaks in the 2D [¹ H, ¹ H] NOESY spectra (top) are highlighted according to
275	the color scheme in (a) (bottom). Error bars for CEST profiles in (b), which are
276	smaller than the data points, were obtained using triplicate experiments, as
277	described in Methods. RF powers for CEST profiles are color-coded.

278

279

280 ¹H CEST profiles (Fig. 3b and Fig. S2) for well-resolved imino resonances of A₆-281 DNA (Fig. 2) were acquired simultaneously in a 1D manner using ~3 hours of 282 acquisition time on a spectrometer operating at 600 MHz ¹H frequency equipped with a cryogenic probe, and using ~1.0 mM unlabeled DNA (Methods). Data were 283 initially collected at pH = 6.8. Under these near neutral pH conditions, it is 284 generally not feasible to detect the Watson-Crick to Hoogsteen exchange process 285 for G-C bps due to the low population of the protonated G-C⁺ Hoogsteen bp 286 287 (Nikolova et al., 2013a). The lack of expected dips for the ES G-C⁺ Hoogsteen bp

- under these conditions provides an opportunity to better assess any extraneous
 ¹H CEST dips arising due to NOE effects. Unlike for G-C bps, the Hoogsteen
 exchange should still be detectable for A-T bps under these pH conditions.
- 291

292 Shown in Fig. 3b is a representative imino ¹H CEST profile measured for G2-H1 in 293 the well-characterized A₆-DNA duplex (Nikolova et al., 2011). Besides the major 294 dip, no additional dips were visible in the ¹H CEST profile. The major dip was also 295 symmetric (Rangadurai et al., 2020a), indicating little to no contribution from Hoogsteen exchange or NOE effects, as expected for G-C bps under these pH 296 297 conditions (Nikolova et al., 2013a). On the other hand, a minor shoulder was 298 observed in the ¹H CEST profile of T5-H3 (Fig. 3b). The shoulder occurs at an offset frequency that does not correspond with any other observable proton 299 300 frequency in the A_6 -DNA duplex and is therefore unlikely to be the result of NOE 301 effects (Fig. 3a). Rather, as will be described below, the shoulder corresponds to 302 the ES Hoogsteen bp which is to be expected for the A-T bp at pH = 6.8.

303

To verify that the dips observed in the ¹H CEST profile of T5-H3 and other thymine residues in A₆-DNA (see Fig. 4 and S2) do not represent an NOE effect, we performed ¹H CEST experiments on a corresponding A₆-RNA duplex (Fig. 2). Unlike in B-form DNA duplexes, G-C⁺ and A-U Hoogsteen bps are both

308	undetectable in A-form RNA duplexes by off-resonance 13 C and 15 N $R_{1\rho}$ RD, most
309	likely due their much lower population ($p_{ES} < 0.04$ %) (Zhou et al., 2016;
310	Rangadurai et al., 2018). If the shoulder observed in the ¹ H CEST profile of T5-
311	H3 in A_6 -DNA is due to a Hoogsteen ES, and not NOE dips, we would expect to
312	observe a symmetric profile without ES dips for U5-H3 in A_6 -RNA. Indeed, the
313	corresponding ¹ H CEST profiles for U5-H3 (Fig. 4) and all other uridine and
314	guanine (Fig. S3) imino protons in A_6 -RNA were symmetric, with no evidence for
315	any asymmetry or shoulder, indicating the absence of exchange and NOE effects.
316	

318	Figure 4. Representative ¹ H CEST profiles measured for A_2 -DNA (pH 5.4) at 25
319	°C, A₅-DNA (pH 5.2) at 26 °C, A₀-DNA (pH 6.8) at 25 °C and A₀-RNA (pH 6.8) at
320	25 °C. Residues with detectable RD, undetectable RD, and overlapped 1D ^{1}H
321	resonances (see Fig. 2) are highlighted in red, blue, and gray circles respectively.
322	Shown are the fits of the ¹ H CEST data to a 2-state Bloch-McConnell equation with
323	and without ($k_{ex} = \Delta \omega = p_{ES} = 0$) chemical exchange. Shown below the CEST
324	profiles are residual (experimental normalized intensity - fitted normalized
325	intensity) plots. Also shown in inset are the reduced chi-square ($r\chi^2$), and Akaike's
326	(wAIC) and Bayesian information criterion (wBIC) weights for fits with exchange
327	(Methods). The dashed gray lines indicate the Hoogsteen $\Delta\omega$ positions in both 1H
328	CEST profiles and in residual plots. Error bars for CEST profiles, which are smaller
329	than the data points, were obtained using triplicate experiments, as described in
330	Methods. RF powers for CEST profiles are color-coded.

- 331
- 332

Therefore, the shoulders in the ¹H CEST profiles (Fig. 3,4, Fig. S2,3) most likely rise due to chemical exchange with an ES. This was further confirmed by evaluating whether fits to the ¹H CEST profiles show any statistically significant improvement with the inclusion of exchange, as described below. Based on a similar analysis, no NOE dips were observable in the ¹H CEST profiles (Fig. 4,

338	S2,3) for all other residues in A_6 -DNA, A_6 -RNA, and in two other DNA duplexes
339	across a range of pH and temperature conditions when using selective excitation
340	and relaxation delay of 100 ms (Fig. 2, Fig. 4, and S2,3). These results indicate
341	that any NOE effects between imino and non-imino protons are small under these
342	experimental conditions.
343	
344	NOE dips arising from cross-relaxation to neighboring imino protons (Fig. 3a) are
345	more difficult to assess, as they would be buried within the major dip (Fig. 3b).
346	However, since no NOE dips were observable for non-imino protons within 2.8 Å $$
347	(Fig. 3a), a sizeable cross-relaxation contribution from neighboring imino protons
348	is unlikely considering they are separated by a longer internuclear distance of ~3.7-
349	3.9 Å (Fig. 3a), and correspondingly, have weaker intensities in 2D NOESY spectra
350	(Fig. 3b). Nevertheless, whether or not these NOE effects are large enough to
351	impact determination of the exchange parameters was examined (vida infra)
352	through comparison of the exchange parameters derived from fitting the imino $^1\mathrm{H}$
353	CEST profiles with those measured independently using off-resonance $^{\rm 13}{\rm C}$ and
354	¹⁵ N $R_{1\rho}$ RD measurements.

³⁵⁶ Importantly, upon increasing the relaxation delay to 400 ms, or using a non-³⁵⁷ selective ¹H excitation pulse (pulse **a** in Fig. 1b) with a delay of 100 ms, NOE dips

358	became visible in the ¹ H CEST profiles as shown for G2-H1 and T5-H3 (Fig. 3b)
359	in A ₆ -DNA. The dips occurred at the 1 H resonance frequency of nearby protons,
360	and as expected, were particularly pronounced for the partner C-H4a in the case
361	of G2-H1 and the partner A-H2 in the case of T5-H3 (Fig. 3b). Nevertheless, the
362	¹ H CEST profiles acquired with 400 ms delay could be fit when restricting the offset
363	to the imino proton region (-3 - 3 ppm), and the fitted exchange parameters were
364	similar to those obtained from fitting profiles with 100 ms relaxation delay in which
365	no NOE dips were visible (Fig. S4, Table S1). In contrast, the ¹ H CEST profiles
366	measured using non-selective excitation, which had larger NOE dips relative to
367	using a selective excitation pulse, could not be satisfactorily fit (Fig. S4). These
368	results underscore the importance of critically evaluating the NOE contributions on
369	a case-by-case basis (Schlagnitweit et al., 2018) and also suggest that NOE
370	effects can be effectively suppressed for the canonical duplexes used in this study
371	provided use of selective excitation and short relaxation delays.

372

It should be noted that to avoid any complexities due to NOE effects with water protons or hydrogen exchange, we restricted the offset to -6 ppm – 6 ppm when analyzing and fitting the ¹H CEST profiles. This is common practice as relatively narrow offsets (< 4 ppm) were used in prior ¹H CEST studies of both nucleic acids (Dubini et al., 2020; Wang et al., 2021; Liu et al., 2020) and proteins (Yuwen et al.,

378	2017a; Yuwen et al., 2017b). While we did not observe a dip near the water
379	chemical shift in the ¹ H CEST profile for the internal residue T5-H3, a weak and
380	broad dip near the water chemical shift was observed in the profile for the near
381	terminal residue G2-H1 (Fig. S2). The latter dip could be due to NOEs between
382	G2-H1 and water protons and/or due to fast hydrogen exchange kinetics.
383	

384 2.2 Benchmarking the utility of ¹H CEST to probe Watson-Crick to 385 Hoogsteen exchange in DNA duplexes

386 To examine the utility of the SELOPE ¹H CEST experiment to characterize Watson-Crick to Hoogsteen exchange, we benchmarked the experiment by 387 388 measuring conformational exchange in three DNA duplexes (A₆-DNA, A₂-DNA and A5-DNA, Fig. 2) for which we have previously extensively characterized the 389 Watson-Crick to Hoogsteen exchange using ¹³C and ¹⁵N off-resonance R_{10} 390 (Nikolova et al., 2011; Alvey et al., 2014; Shi et al., 2018) and CEST (Rangadurai 391 392 et al., 2020a; Rangadurai et al., 2020b) experiments. We compared the exchange parameters derived using ¹H CEST with counterparts derived using ¹³C/¹⁵N R_{1p} or 393 394 CEST for a variety of G-C and A-T bps across three different DNA duplexes and 395 varying pH (5.2-6.8) conditions. All ¹H CEST experiments were performed using 100 ms relaxation delay and selective excitation. 396

398	As expected, for several thymine residues, the imino ¹ H CEST profile was visibly
399	asymmetric (Fig. 4 and Fig. S2,3), consistent with relatively fast ($k_{ex} > 1000 \text{ s}^{-1}$)
400	Watson-Crick to Hoogsteen exchange. The asymmetry manifests as an upfield
401	shifted shoulder (e.g. T8-H3 in A_5 -DNA in Fig. 4) as expected for T-H3 Hoogsteen
402	chemical shift ($\Delta \omega$ ~-2 ppm) (Nikolova et al., 2011; Xu et al., 2018). In other cases,
403	such as T9-H3 in A_6 -DNA, the asymmetry was less pronounced, and the exchange
404	contribution was only apparent following comparison of fits with and without
405	exchange (see Fig. 4).

As expected, at pH = 6.8, the imino ¹H CEST profiles were symmetric for most 407 408 guanine residues consistent with no observable exchange (Fig. 4 and S2,3). 409 However, the major dip became asymmetric for several guanine residues when 410 lowering the pH to 5.2 or 5.4, as expected for the Watson-Crick to Hoogsteen 411 exchange of G-C bps, which is favored at lower pH (Fig. 4 and S3). All minor dips 412 occurred at resonance frequencies that did not correspond with any other protons in the molecule (Fig. 2 and S1,2). In all cases, the ¹H CEST profiles could be 413 satisfactorily fit to a 2-state model with or without exchange, suggesting that any 414 NOE contribution to the ¹H CEST profile is likely to be insignificant. 415

416

417	To identify which imino ¹ H CEST profiles have significant chemical exchange
418	contributions, each profile was subjected to a fit with or without ($\Delta \omega = p_{ES} = k_{ex} =$
419	0) 2-state chemical exchange (Methods). Akaike information criterion (AIC) and
420	Bayesian information criterion (BIC) (Burnham and Anderson, 2004) weights were
421	then used to evaluate whether any improvement in the fit due to inclusion of
422	chemical exchange was statistically significant (Kimsey et al., 2018; Liu et al.,
423	2020). The improvement of fit was considered to be statistically significant when
424	both AIC and BIC weights > 0.995 and the reduced chi-square $(r\chi^2)$ is reduced
425	with the inclusion of exchange. Residual plots were also used to visualize changes
426	in fit quality (Fig. 4).

427

428 Based on the AIC and BIC analysis, all thymine and guanine residues shown 429 previously to undergo Watson-Crick to Hoogsteen exchange using off-resonance 430 ¹³C and/or ¹⁵N R_{1p} under these experimental conditions, also showed statistically 431 significant improvements when fitting the ¹H CEST profiles with the inclusion of 432 chemical exchange (Fig. 4 and S2,3). On the other hand, all guanine residues 433 including G2 and G11 in A₆-DNA and G11 in A₂-DNA, which did not show signs of Hoogsteen exchange in off-resonance ¹³C and/or ¹⁵N R₁₀ (Nikolova et al., 2011; 434 435 Shi et al., 2018) under these experimental conditions also did not show statistically

- 436 significant improvements when fitting their ¹H CEST profiles with the inclusion of
- 437 chemical exchange (Fig. 4 and S2,3).
- 438
- Interestingly, a few residues including T5, T6, T7 and T22 in A₆-DNA, T18, G6 and 439440 G20 in A₂-DNA (Fig. S2,3), showed exchange based on ¹H CEST but did not show evidence for Hoogsteen exchange based on prior off-resonance ¹³C and/or ¹⁵N R₁₀ 441 442 experiments (Nikolova et al., 2011; Alvey et al., 2014; Shi et al., 2018). As will be 443 elaborated in the following section, these data provide new insights into the Watson-Crick to Hoogsteen exchange process, and suggest that at least in some 444 445 cases, ¹H CEST can exceed the detection limits of ¹³C/¹⁵N based methods. 446 In addition, T18 and G20 in A₂-DNA were difficult to probe using ¹³C RD due to 447
- spectra overlap (Nikolova et al., 2011) but could easily be measured using ¹H CEST (Fig. 2, 4 and S3). In contrast, other residues such as T8 and T4 in A₆-DNA, T4 and T22 in A₂-DNA, and G10 and G11 in A₅-DNA could be targeted for ¹³C or ¹⁵N RD measurements (Nikolova et al., 2011; Alvey et al., 2014) but could not be measured by ¹H CEST due to overlap in the 1D ¹H imino spectra (Fig. 2). This highlights the complementarity of ¹H and ¹³C/¹⁵N RD in characterizing Watson-Crick to Hoogsteen exchange.
- 455

456	To assess how well the exchange parameters are determined by the ¹ H CEST
457	data, we subjected the ¹ H CEST profiles for residues T7 ($k_{ex}/\Delta\omega \sim 0.2$), T9 ($k_{ex}/\Delta\omega$
458	~ 0.82) and T22 ($k_{\rm ex}/\Delta\omega$ ~ 3.5) which exhibit exchange on the slow, intermediate,
459	and fast timescale (Rangadurai et al., 2019b) respectively, to a degeneracy
460	analysis. We computed the reduced chi-square $(r\chi^2)$ for a 2-state fit as a function
461	of varying k_{ex} , $\Delta \omega$ or p_{ES} . In all cases, the $r\chi^2$ values increased significantly (up
462	to 10-fold) when varying $k_{\rm ex}$, $\Delta \omega$ or $p_{\rm ES}$ by 3-fold (Fig. S5), indicating that the
463	exchange parameters are well-defined by the ¹ H CEST data.

464

To verify that the exchange process sensed by ¹H CEST does indeed correspond to Watson-Crick to Hoogsteen exchange, we compared the exchange parameters, p_{ES} and k_{ex} , derived from a 2-state fit of the data to values determined previously using off-resonance ¹³C and/or ¹⁵N R_{1p} (Nikolova et al., 2011; Shi et al., 2018; Alvey et al., 2014) for Hoogsteen dynamics (Fig. 5a and Table S1). In total, we were able to compare 13 data points from ¹H CEST and ¹³C/¹⁵N R_{1p} for three different duplexes under different conditions of temperature and pH (Fig. 2,5a).

474 Figure 5. Comparison of exchange parameters for the Watson-Crick to Hoogsteen exchange obtained from ¹H CEST and ¹³C/¹⁵N R_{1p} . (a) Comparison of 475 476 exchange parameters (k_{ex} and p_{ES}) measured using ¹H CEST with counterparts 477 previously reported using ${}^{13}C/{}^{15}N$ off-resonance $R_{1\rho}$ (Nikolova et al., 2011; Alvey et al., 2014; Shi et al., 2018). ¹³C RD data for A18, A19 and A20 were measured 478 479 using off-resonance R_{1p} in this study (Fig. S7). Small systematic deviations in k_{ex} 480 for the values indicated with asterisks could be due to small differences in temperature (< 0.8°C) across different spectrometers. Bps are specified by the 481 482 corresponding purine residue. (b) Comparison of the $\Delta \omega$ obtained from fitting ¹H 483 CEST profiles for T-H3 and G-H1 (Table S1) with the values expected for a 484 Watson-Crick to Hoogsteen transition based on duplexes in which A-T or G-C⁺ 485 Hoogsteen bps were rendered the dominant state, by using N^1 -methylated adenine 486 (m¹A) (Nikolova et al., 2011; Sathyamoorthy et al., 2017; Rangadurai et al., 487 2020b), by binding of the drug (echinomycin) to a DNA duplex (Xu et al., 2018),

488	or through use of GC repeat sequences (GC repeats) that predominantly form
489	Hoogsteen bps at low pH (Stelling et al., 2017). (c) Comparison of free energy
490	(ΔG°), enthalpy (ΔH°) and entropy (-T ΔS° , T = 25 °C) of the Watson-Crick to
491	Hoogsteen transition, and the activation free energy ($\Delta G^{\circ \ddagger}$), enthalpy ($\Delta H^{\circ \ddagger}$) and
492	entropy (-T Δ S° [‡] , T = 25 °C) for Watson-Crick to Hoogsteen (Watson-Crick -
493	Hoogsteen) and Hoogsteen to Watson-Crick (Hoogsteen - Watson-Crick)
494	transitions measured using ¹ H CEST in this study and using ¹³ C $R_{1\rho}$ from Nikolova
495	et al (Nikolova et al., 2011). The energetics in (c) were measured for the Watson-
496	Crick to Hoogsteen transition of A16-T9 in A_6 -DNA at pH 6.8. Errors in (a) were
497	fitting errors of ¹ H CEST, calculated as described in Methods or errors of $^{13}C/^{15}N$
498	$R_{1\rho}$ calculated using a Monte-Carlo scheme as described previously (Rangadurai
499	et al., 2019b). Errors in (b) are the standard deviations of data points (shown as
500	black dots) in each category. Error bars in (c) were propagated from the errors in
501	the exchange parameters obtained from ¹ H CEST or ¹³ C/ ¹⁵ N R_{1p} .

502

503

Indeed, the p_{ES} and k_{ex} values derived using ¹H CEST were in very good agreement with their off-resonance ¹³C and/or ¹⁵N R_{1p} counterparts (Fig. 5a). The differences between k_{ex} and p_{ES} measured using the two methods was often within error with the largest differences being <3-fold. A small and systematic difference

508	in k_{ex} was observed for a subset of the data (Fig. 5a), and this might be due to
509	small temperature differences (<0.8°C) between spectrometers. Importantly, the
510	ES imino ¹ H chemical shifts deduced from a 2-state fit of the ¹ H CEST profiles
511	($\Delta \omega_{A-T}$ = ~-1 to -2 ppm and $\Delta \omega_{G-C}$ = ~-1.5 to -2.0 ppm) were also in good agreement
512	with the expected range of values ($\Delta \omega$ = -1 to -2 ppm) for Hoogsteen bps (Fig. 5b)
513	based on studies of duplexes containing Hoogsteen bps as the dominant
514	conformation (Nikolova et al., 2011; Stelling et al., 2017; Xu et al., 2018;
515	Rangadurai et al., 2020b).

516

As an additional test, we also measured temperature-dependent (5 °C, 10 °C, 20 °C, 25 °C, 30 °C and 45 °C) ¹H CEST profiles for A₆-DNA at pH 6.8 (Fig. S2), and then used the temperature dependence of the fitted kinetic rate constants (k_1 and k_1) to determine the standard and activation enthalpy and entropy changes for the Watson-Crick to Hoogsteen transition (Fig. S6). These values were in excellent agreement with those measured from off-resonance ¹³C $R_{1\rho}$ (Nikolova et al., 2011) (Fig. 5c), further supporting the robustness of the ¹H CEST methodology.

525 **2.3** New insights into Hoogsteen breathing

- ¹H CEST profiles for some residues show detectable exchange contributions when
 corresponding ¹³C/¹⁵N RD measurements do not or show only weak exchange.
 This suggests that ¹H CEST can provide additional insights into Watson-Crick to
 Hoogsteen exchange and extend the detection limits of conventional ¹³C/¹⁵N RD
 measurements.
- 531

532For example, using ¹H CEST it was feasible to measure Watson-Crick to 533 Hoogsteen exchange for T5-H3, T6-H3, and T7-H3 (Fig. S2) within the middle of the A-tract motif (defined as An-tract with n>3) in A6-DNA. These residues had 534535 previously exhibited only weak on-resonance ¹³C R_{1p} RD, and as a result, no off-536 resonance $R_{1\rho}$ data were ever recorded (Nikolova et al., 2011). Based on the ¹H 537 CEST measurements, residues within the A-tract motif have ten-fold lower 538Hoogsteen population ($p_{ES} = 0.06 \pm 0.01$ %-0.09 ± 0.03 %) relative to other A-T bps 539 in A₆-DNA ($p_{ES} > -0.10$ %) (Table S1). These represent the lowest A-T Hoogsteen 540 populations ever recorded to date in duplex DNA (Table S1). The exchange 541 kinetics were also 2-fold slower ($k_{ex} \sim 1000 \text{ s}^{-1}$) for the A-tract residues relative to 542 other A-T bps ($k_{ex} > 2000 \text{ s}^{-1}$) in A₆-DNA (Table S1). Interestingly, the suppression 543 of Hoogsteen dynamics within the A-tract motif appears to be A-tract length 544 dependent, with both the Hoogteen population and exchange kinetics increasing slightly for similar bps in A5-DNA (Table S1). The suppression of Hoogsteen 545

546	dynamics within A-tracts is consistent with prior studies showing them to be more
547	rigid and stiff motifs relative to scrambled DNA (Nikolova et al., 2012b). We
548	verified these ¹ H CEST derived exchange parameters for A-tract residues in A_{6} -
549	DNA by performing off-resonance ¹³ C $R_{1\rho}$ measurements (Fig. S7) on uniformly
550	¹³ C/ ¹⁵ N labeled A ₆ -DNA and did indeed observe the expected RD with p_{ES} and k_{ex}
551	values similar (difference <3-fold, Fig. 5a) to those measured using ¹ H CEST.
552	These prospective tests of the ¹ H CEST data using off-resonance ¹³ C/ ¹⁵ N $R_{1\rho}$ RD
553	data further support the methodology.

554

555 The ability to characterize fast exchange kinetics has long been a motivation for 556using ¹H in RD experiments to characterize conformational exchange (Ishima et 557 al., 1998; Ishima and Torchia, 2003; Eichmuller and Skrynnikov, 2005; Lundstrom 558and Akke, 2005; Otten et al., 2010; Hansen et al., 2012; Smith et al., 2015; Steiner et al., 2016; Furukawa et al., 2021). Indeed, ¹H CEST made it possible to measure 559 560 fast Watson-Crick to Hoogsteen exchange kinetics which were undetectable by off-resonance ¹³C R_{1p}. In particular, it was possible to measure Watson-Crick to 561 Hoogsteen exchange for T22 in A₆-DNA with $k_{ex} > 20,000 \text{ s}^{-1}$ (Fig. S2 and Table 562 563 S1), which is the fastest ever recorded Hoogsteen exchange process at 25 °C (Table S1). In contrast, the off-resonance ${}^{13}C R_{1p} RD$ profiles reported for this 564565 residue in prior studies were flat (Nikolova et al., 2011; Shi et al., 2018), and

566	simulations show that such an exchange process is too fast for reliable detection
567	using ¹³ C $R_{1\rho}$ (Fig. S8a). Similarly, it was feasible to measure Watson-Crick to
568	Hoogsteen exchange for G6 ($p_{ES} \sim 0.3 \%$, $k_{ex} \sim 3000 \text{ s}^{-1}$) in A ₂ -DNA using ¹ H CEST
569	yet no off-resonance ¹³ C $R_{1\rho}$ RD on C1' was previously detected (Shi et al., 2018),
570	which based on simulations, was likely due to a combination of exchange kinetics
571	and small $\Delta \omega$ value (Fig. S8b).
572	
573	One of the potential utilities of the ¹ H CEST experiment is the measurement of very
574	fast exchange kinetics at high temperatures and in a manner insensitive to melting
575	of duplexes, shown previously to complicate analysis of Hoogsteen exchange
576	using 13 C and 15 N RD (Shi et al., 2019). Melting of duplexes should not yield any
577	exchange dips around the imino ¹ H region given that the imino protons of single-
578	stranded species (ssDNA) exchange rapidly with solvent.
579	
580	We therefore measured ^1H CEST profiles for A_6-DNA at 45 °C (Fig. S2), in which
581	the ssDNA population is ~10 % (Shi et al., 2019). We did not observe any evidence

for the ssDNA species in the ¹H CEST profiles. Instead, we were able to observe ultra-fast ($k_{ex} \sim 10,000 \text{ s}^{-1}$, see Table S1) Hoogsteen exchange which could not previously be detected by ¹³C or ¹⁵N RD experiments at the same temperature (Shi

585 et al., **2019**).

- Taken together, these results demonstrate that the ¹H CEST experiment broadens
 the range of populations and exchange rates over which Hoogsteen breathing can
 be effectively characterized.
- 590 **3 Discussion**

591 Building on prior studies showing the utility of the SELOPE ¹H RD experiment in 592 measuring conformational exchange in unlabeled RNA (Schlagnitweit et al., 2018) and DNA (Furukawa et al., 2021; Dubini et al., 2020), our study establishes the 593 utility of high-power ¹H CEST SELOPE as a facile means for measuring the 594 Watson-Crick to Hoogsteen exchange process in nucleic acids without the need 595 596 for isotopic enrichment. The methodology is supported by the very good 597 agreement observed between the measured exchange parameters and values measured independently using ¹³C and/or ¹⁵N R_{1p} for a variety of bps in three 598 599 duplexes under different conditions of temperature and pH, as well as by the good agreement seen between the imino ¹H chemical shifts and those expected based 600 on duplexes containing Hoogsteen bps as the dominant GS conformation. The 601 602 high throughput nature of the experiment and simple sample requirements enabled 603 us to measure Hoogsteen dynamics for 37 data points corresponding to 22 distinct

604	bps for three different pH conditions and seven different temperatures (Table S1),
605	the largest collection of Hoogsteen dynamics from a single study to date. We
606	envision using the ¹ H CEST SELOPE experiments to pre-screen DNA duplexes
607	and to perform follow-up ¹³ C and ¹⁵ N RD experiments to confirm any interesting
608	outliers, particularly regions showing substantially elevated Hoogsteen dynamics.
609	
610	An important consideration when applying ¹ H CEST to the study of chemical
611	exchange are contributions due to ¹ H- ¹ H cross-relaxation originating from cross
612	relaxation, which may give rise to extraneous NOE dips that complicate data
613	analysis (Yuwen et al., 2017a; Bouvignies and Kay, 2012; Eichmuller and
614	Skrynnikov, 2005). These contributions have been shown to be significant in
615	proteins particularly when characterizing slow exchange (k_{ex} < 200 s ⁻¹)
616	necessitating use of relatively long relaxation delays (Bouvignies and Kay, 2012).
617	Consistent with prior studies of nucleic acids (Schlagnitweit et al., 2018; Steiner et
618	al., 2016; Baronti et al., 2020) and proteins (Lundstrom and Akke, 2005), our
619	results indicate that NOE effects involving imino protons can be effectively
620	suppressed for DNA and RNA duplexes in the ¹ H CEST experiments through
621	selective excitation provided that the relaxation delays are short on the order of
622	100 ms (Fig. 3b). However, because NOE dips were clearly visible when using
623	400 ms relaxation delay, care should be exercised on a case-by-case basis to

624	evaluate NOE effects (Fig. 3b), which may also be more substantial for certain
625	non-canonical motifs. In addition to cross-referencing the dip with 2D [1H, 1H]
626	NOESY spectra, testing whether the dip increases in magnitude without selective
627	excitation can help to distinguish between dips due to an ES versus NOE effects.
628	
629	Prior studies showed that Watson-Crick to Hoogsteen bp transitions exhibit large
630	variations in the forward rate constants (k_1) while the backward rate constants (k_1)
631	1) is relatively constant across different sequence contexts, consistent with a late
632	transitional state (Alvey et al., 2014). We observe a similar trend in which k_{-1} varied
633	<5-fold while k_1 varied by ~50-fold (Fig. S9). The ¹ H CEST data also revealed
634	significantly lower Hoogsteen abundance ($p_{\rm ES}$ < 0.1 %) in addition to slower
635	exchange kinetics ($k_{ex} \sim 1,000 \text{ s}^{-1}$) within A-tract motifs (Nikolova et al., 2011; Alvey
636	et al., 2014), while also reinforcing prior data (Xu et al., 2018) suggesting increased
637	exchange kinetics near terminal ends. Collectively, these data show that the
638	Hoogsteen population can vary by as much as ~14-fold while k_{ex} can vary by ~20-
639	fold only due to changes in sequence and positional context (Table S1). These
640	strong sequence and position dependencies could play important roles in
641	biochemical processes acting on DNA.

642

643	A recent study (Furukawa et al., 2021) reported on-resonance imino ${}^{1}H R_{1\rho} RD$ for
644	a guanine residue in a DNA duplex at pH = 7.5, T= 30 $^\circ$ C, and in 150 mM NaCl.
645	Because off-resonance measurements were not performed, only $k_{ex} \sim 10,000 \text{ s}^{-1}$
646	could be determined while the values of $\Delta\omega$ and $\ensuremath{p_{\text{ES}}}$ were not determined. The
647	study noted that a Hoogsteen bp as the ES was unlikely given that $G\mbox{-}C^+\mbox{-}Hoogsteen$
648	bps are disfavored at pH= 7.5 and because the observed rate of exchange ($k_{\rm ex} \sim$
649	10,000 s ⁻¹) was much faster than is typically observed for Watson-Crick to
650	Hoogsteen exchange. Instead, the data were interpreted as evidence for a base
651	opened state. However, the observed rate of exchange $k_{ex} \sim 10,000 \text{ s}^{-1}$ falls
652	comfortably within the range of values measured here for Watson-Crick to
653	Hoogsteen exchange using ¹ H CEST at similar pH conditions. For example, for
654	the G10-C15 bp in A ₆ -DNA at the same temperature and pH = 6.8, k_{ex} for Watson-
655	Crick to Hoogsteen exchange was ~6,000 s ⁻¹ (Fig. 4 and Table S1). Similar
656	Watson-Crick to Hoogsteen exchange parameters ($p_{\rm ES}$ ~0.05 % and $k_{\rm ex}$ ~2000 s ⁻
657	$^{\rm 1})$ were recently reported for this bp at 25 °C and pH 6.8 using cytosine amino $^{\rm 15}N$
658	RD (Rangadurai et al., 2019a) and the ES $\Delta\omega_{C\text{-N4}}$ = -9 ppm was shown to be in
659	excellent agreement with values expected for a G-C ⁺ Hoogsteen bp. In addition,
660	based on hydrogen exchange measurements, $p_{\rm ES}$ ~0.00001 % to 0.01 % and $k_{\rm ex}$
661	$(k_{cl} + k_{op}, k_{cl} \text{ and } k_{op} \text{ are the base closing and opening rate constant, respectively})$
662	~ 10^5 to 10^7 s ⁻¹ for the base-opened ES, and this process should fall outside RD

663	detection (Gueron and Leroy, 1995; Gueron et al., 1987; Leroy et al., 1988; Leijon
664	and Graslund, 1992; Snoussi and Leroy, 2001). Therefore, the ES detected by
665	Furukawa et al (Furukawa et al., 2021) is more likely a Hoogsteen bp.
666	
667	In conclusion, by obviating the need for isotopic enrichment, the $^1\mbox{H}$ CEST
668	experiment expands the scope of characterizing Watson-Crick to Hoogsteen
669	exchange in nucleic acids by NMR. We are presently applying the experiment to
670	map the sequence dependence of Hoogsteen breathing dynamics and
671	systematically, how it varies with pH, salt, and crowding, and following the
672	introduction of lesions, mismatches, and molecules that bind to the DNA.

673 **4 Methods**

674 **4.1 Sample preparation**

Unlabeled DNA and RNA oligonucleotides: Unmodified DNA oligonucleotides 675 676 were purchased from Integrated DNA Technologies with standard desalting 677 purification. RNA oligonucleotides were synthesized using a MerMade 6 Oligo 678 Synthesizer employing 2'-tBDSilyl protected phosphoramidites (n-acetyl protected 679 rC, rA and rG, and rU phosphoramidites were purchased from Chemgenes) and 1 µmol standard synthesis columns (1000 Å) (BioAutomation). 680 RNA 681 oligonucleotides were synthesized with the final 5'-protecting group, 4,4'-682 dimethoxytrityl (DMT) retained. RNA oligonucleotides were cleaved from columns 683 using 1 ml AMA (1:1 ratio of 30 % ammonium hydroxide and 30 % methylamine) 684 and incubated at room temperature for 2 hours. The sample was then air-dried 685 and dissolved in 115 µL DMSO, 60 µL TEA, and 75uL TEA.3HF, and then 686 incubated at T = 65 °C for 2.5 hours to remove 2'-O protecting groups. The Glen-Pak RNA cartridges (Glen Research Corporation) were then used to purify the 687 688 samples followed by ethanol precipitation.

689

Labeled DNA oligonucleotides: The uniformly ¹³C, ¹⁵N labeled A₆-DNA sample was
 prepared using chemically synthesized DNA (purchased from IDT), Klenow

692	fragment DNA polymerase (New England Biolab) and ¹³ C/ ¹⁵ N isotopically labeled
693	dNTPs (Silantes) using the Zimmer and Crothers method (Zimmer and Crothers,
694	1995). The oligonucleotide was purified using 20 % 29:1 polyacrylamide
695	denaturing gel with 8 M urea, 20 mM Tris borate and 1 mM EDTA, and then using
696	electro-elution (Whatmann, GE Healthcare) in 40 mM Tris Acetate and 1 mM
697	EDTA, followed by ethanol precipitation.

698

Sample annealing and buffer exchange: DNA/RNA oligonucleotides were resuspended in water (200-500 μ M). To prepare duplex samples, equimolar amounts of the constituent single stranded DNA/RNA samples were mixed and then heated at T = 95 °C for ~5 min followed by cooling at room temperature for ~1 hour. All samples were exchanged three times into the desired buffer using centrifugal concentrators (4 mL, Millipore Sigma). 10 % D₂O (Millipore Sigma) was added to the samples prior to the NMR measurements.

706

Sample concentrations and buffer conditions: Unless mentioned otherwise, the
NMR buffer contains 25 mM sodium chloride, 15 mM sodium phosphate, 0.1 mM
EDTA and 10 % D₂O. Sample concentrations and buffer pH: A₆-DNA, 1.0 mM, pH
6.8; A₂-DNA, 1.0 mM, pH 5.4; A₅-DNA, 0.2 mM, pH 5.2; A₆-RNA, 0.5 mM, pH 6.8.
Concentration was estimated by measuring the absorbance of the sample at

- 712 260nm and using extinction coefficients from the ADT Biol Oligo calculator
- 713 (https://www.atdbio.com/tools/oligo-calculator).
- 714

715 **4.2 NMR spectroscopy**

- All NMR experiments were performed on a 600 BrukerAvance 3 spectrometer
- equipped with a triple-resonance HCN cryo-genic probe. The NMR data were
- processed and analyzed with NMRpipe (Delaglio et al., 1995) and SPARKY (T.D.
- Goddard and D.G. Kneller, SPARKY 3, University of California, San Francisco).
- 720

Resonance assignments: Imino resonances were assigned using a combination
of 2D [¹H, ¹H] NOESY and [¹⁵N, ¹H] SOFAST-HMQC (Sathyamoorthy et al., 2014)
experiments. Assignments for A₆-DNA, A₂-DNA and A₆-RNA were reported
previously (Sathyamoorthy et al., 2017; Zhou et al., 2016; Nikolova et al., 2011).
The [¹H, ¹H] NOESY spectrum for A₅-DNA is shown in Fig. S1.

726

¹*H CEST*: The pulse sequence was shown in Fig. 1b, and was adapted from Schlagnitweit *et al* (Schlagnitweit et al., 2018). Relaxation delays T_{EX} = 100 ms was used for all ¹*H* CEST measurements at low temperatures (5 °C – 30 °C), while a shorter T_{EX} = 80 ms was used for high (45 °C) temperature measurements. A

731	longer T_{EX} = 400 ms was used to illustrate artefacts arising due to NOE dips (Fig.
732	3b). RF power and offset combinations used in the CEST measurements are given
733	in Table S2. Calibration of RF field powers for the ¹ H CEST measurements was
734	performed as described previously (Rangadurai et al., 2019b) using the same
735	pulse sequence. Field inhomogeneity was also measured (Fig. S10) using the
736	same sequence and the procedure as described previously (Guenneugues et al.,
737	1999). ¹ H inhomogeneity was measured by performing on-resonance ¹ H CEST
738	experiments on G2-H1 of A_6 -DNA, chosen as it does not experience
739	conformational exchange. The longest relaxation delay used for the
740	measurements were 10 s, 2 s, 1 s, 0.4 s, 0.1 s and 0.04 s for RF fields 10 Hz, 50
741	Hz, 100 Hz, 200 Hz, 1000 Hz and 4000 Hz, respectively. The resulting nutation
742	curve was Fourier transformed and was fit to a gaussian function (blue lines in Fig.
743	S10) to extract the full-width at half-maximum, which was used for defining the
744	inhomogeneity as described previously (Guenneugues et al., 1999). The selective
745	pulse was set to be off (Fig. 3b) by replacing pulse a (Fig. 1b) with a non-selective
746	¹ H hard 90° pulse.

747

Fitting of ¹H CEST data: When performing 2-state CEST fitting with and without exchange, we restricted the offset to -6 to 6 ppm for ¹H CEST experiment with relaxation delay \leq 100 ms, and to -3 to 3 ppm for experiments with relaxation delay

751	= 400 ms, to obviate any potential effects from $^{1}H^{-1}H$ cross-relaxation artifacts (Fig.
752	3b). Peak intensities of all imino protons in the 1D spectra as a function of RF
753	power and offset frequency were extracted using NMRPipe (Delaglio et al., 1995).
754	The peak intensity at a given RF power and offset is normalized by the average
755	peak intensity over the triplicate CEST measurements with zero relaxation delay
756	under the same RF power. The uncertainty in the measured peak intensity at each
757	offset frequency and RF power combination was assumed to be equal to the
758	standard deviation of the peak intensities for triplicate CEST experiments with zero
759	relaxation delay under the same RF power (Zhao et al., 2014; Shi et al., 2019).
760	CEST profiles were generated by plotting the normalized intensity as a function of
761	offset Ω = ω_{RF} – ω_{obs} where ω_{obs} is the Larmor frequency of the observed
762	resonance and ω_{RF} is the angular frequency of the applied RF field. RF field
763	inhomogeneity (Fig. S10) was taken into account during CEST fitting as described
764	previously (Rangadurai et al., 2020a). The normalized CEST profiles were then fit
765	via numerical integration of the Bloch-McConnell (B-M) equations as described
766	previously (Rangadurai et al., 2020a). Fitting of CEST profiles without exchange
767	(Fig. 4, Fig. S2-4) was performed by setting $p_{ES} = k_{ex} = \Delta \omega = 0$. Errors in exchange
768	parameters were set to be equal to the fitting errors which were obtained as the
769	square root of the diagonal elements of the covariance matrix. Reduced chi-

square $(r\chi^2)$ was calculated to assess the goodness of fitting (Rangadurai et al.,

2019b). The residual sum of squares (RSS) was computed as follows

772
$$RSS = \sum_{i=1}^{n} (I_i^{fit} - I_i^{exp})^2$$
(1)

where I_i^{fit} and I_i^{exp} are the *i*th fit and experimentally measured intensity in the CEST profile respectively, and the summation is over all RF power and offset combinations (N).

776

Model selection for fits with and without exchange (Fig. 4, Fig. S2-4) was
performed by computing AIC and BIC weights as follows (Burnham and Anderson,
2004):

780

781
$$AIC = \begin{cases} Nln\left(\frac{RSS}{N}\right) + 2K, & when\frac{N}{K} \ge 40\\ Nln\left(\frac{RSS}{N}\right) + 2K + \frac{2K(K+1)}{N-K-1}, & when\frac{N}{K} < 40 \end{cases}$$
(2)

782

783
$$wAIC = \frac{e^{-0.5\Delta AIC}}{1 + e^{-0.5\Delta AIC}}$$
(3)

784

785
$$BIC = Nln\left(\frac{RSS}{N}\right) + Kln(N)$$
(4)

787
$$wBIC = \frac{e^{-0.5\Delta BIC}}{1 + e^{-0.5\Delta BIC}}$$
(5)

789	Where <i>K</i> is the number of floating parameters when fitting and $\Delta AIC / \Delta BIC$ are the
790	differences between two AIC values (fitting without and with exchange). The AIC
791	$(wAIC_{+ex})$ and BIC $(wBIC_{+ex})$ weights for fits with exchange are reported in Fig. 4
792	and Fig. S2-4. The improvement in the fit was considered statistically significant if
793	both wAIC _{+ex} and wBIC _{+ex} values are > 0.995, and $r\chi^2$ is reduced with the inclusion
794	of exchange. For some resonances, the improvement in the fit with exchange are
795	statistically significant but the resulting exchange parameters are not reliable and
796	have large errors (see Fig. S2,3). For T4 in A ₅ -DNA, p_{ES} = 0.2±0.1 % measured
797	using ¹ H CEST was ~10-fold smaller than p_{ES} = 2.7±1.5 % measured previously
798	using ¹⁵ N RD (Alvey et al., 2014), whereas k_{ex} (~3000 s ⁻¹) was is in good
799	agreement. However, simulations show that due to the small $\Delta\omega$ for ^{15}N (~1 ppm)
800	and fast exchange kinetics $k_{\rm ex}$ (~3000 s ⁻¹) the $p_{\rm ES}$ and $\Delta \omega$ are not well-determined
801	by the ^{15}N RD data (Fig. S6c). For this reason, this data point was excluded for ^{1}H
802	CEST and ¹³ C/ ¹⁵ N RD comparison (Fig. 5a).

803

804 *Off-resonance* ¹³*C* R_{1p} *relaxation dispersion*: ¹³*C* R_{1p} experiments were performed 805 using 1D R_{1p} schemes as described previously (Nikolova et al., 2012a; Nikolova 806 et al., 2011; Hansen et al., 2009). The spin-lock powers and offsets are listed in 807 Table S3. The spin-lock was applied for a maximal duration < 60 ms to achieve

808	~70 % loss of peak intensity at the end of relaxation delay. Off-resonance $R_{1\rho}$
809	profiles (Fig. S8) were generated by plotting $(R_2 + R_{ex}) = (R_{1p} - R_1 \cos^2 \theta)/\sin^2 \theta$,
810	where $\boldsymbol{\theta}$ is the angle between the effective field of the observed resonance and the
811	z-axis, as a function of $\Omega_{\text{eff}}/2\pi,$ where Ω_{eff} = $\omega_{\text{obs}}-\omega_{\text{RF}},$ where ω_{obs} is the Larmor
812	frequency of the spin and ω_{RF} is the carrier frequency of the applied spin-lock.
813	
814	Fitting of ¹³ C $R_{1\rho}$ data: 1D peak intensities were measured using NMRpipe
815	(Delaglio et al., 1995). $R_{1\rho}$ values for a given spin-lock power and offset were
816	calculated by fitting the intensities as a function of delay time to a mono-
817	exponential decay (Kimsey et al., 2015). A Monte-Carlo approach was used to
818	calculate the uncertainties of $R_{1\rho}$ (Bothe et al., 2014). Alignment of initial
819	magnetization during the Bloch-McConnell fitting was performed based on the
820	$k_{\rm ex}/\Delta\omega$ value (Rangadurai et al., 2019b). Chemical exchange parameters were
821	obtained by fitting experimental R_{1p} values to numerical solutions of a 2-state
822	Bloch-McConnell (B-M) equations (Mcconnell, 1958). A Monte-Carlo approach
823	was used to calculate the errors of exchange parameters (Bothe et al., 2014) .
824	Reduced chi-square ($r\chi^2$) was calculated to assess the goodness of fitting
825	(Rangadurai et al., 2019b).

827 **4.3 Thermodynamic Analysis**

828	The observed temperature dependence of k_1 , k_{-1} for the Watson-Crick to
829	Hoogsteen exchange measuring using ¹ H CEST were fit to a modified van't Hoff
830	equation that accounts for statistical compensation effects and assumes a smooth
831	energy surface as described previously (Nikolova et al., 2011; Coman and Russu,
832	2005):

834
$$\ln\left(\frac{k_i(T)}{T}\right) = \ln\left(\frac{k_B\kappa}{h}\right) - \frac{\Delta G_i^{\circ T}(T_{hm})}{RT_{hm}} - \frac{\Delta H_i^{\circ T}}{R}\left(\frac{1}{T} - \frac{1}{T_{hm}}\right) \tag{6}$$

835

 k_i (i = 1, -1) is the forward and backward rate constants, $\Delta G_i^{\circ T}(T)$ and $\Delta H_i^{\circ T}$ are the free energy (at temperature T, in Kelvin) and enthalpy of activation (i = 1) or deactivation (i = -1) respectively. *R* is the universal gas constant (kcal mol⁻¹ K⁻¹) and T_{hm} is the harmonic mean of the experimental temperatures (T_i in K) computed as $T_{hm} = n/\sum_{i=1}^{n} (1/T_i)$, k_B is the Boltzmann's constant (J K⁻¹), κ is the transmission coefficient (assumed to be unity) and *h* is the Planck constant (J s).

842

The goodness-of-fit indicator R^2 (coefficient of determination) (Fig. S6) between the measured and fitted rate constants was calculated as follows: $R^2 = 1 - \frac{SS_{res}}{SS_{total}}$, $SS_{res} = \sum (k_{i,fit} - k_{i,exp})^2$, $SS_{total} = \sum (k_{i,exp} - \overline{k_{i,exp}})^2$. $k_{i,fit}$ and $k_{i,exp}$ (i = 1, -1) are fitted and experimentally measured rate constants. $\overline{k_{i,exp}}$ is the mean

- 847 of all $k_{i,exp}$. Errors of fitting for $\Delta G_i^{\circ T}$ and ΔH_i^T were calculated as the square root
- of the diagonal elements of the covariance matrix. $T\Delta S_i^T$ is calculated as ΔH_i^T –
- 849 $\Delta G_i^{\circ T}$.

850	Data and code availability. The data that support this study are contained in the
851	published article (and its Supplementary Information) or are available from the
852	corresponding author on reasonable request. The python scripts for ¹ H CEST data
853	fitting are available at https://github.com/alhashimilab/1H-CEST.
854	
855	Author contributions. BL, AR, and HMA conceived the project and experimental
856	design. BL, AR, and HS prepared the samples and set up the imino ¹ H CEST
857	experiment. BL performed ¹ H CEST experiments and data analysis. HS
858	performed ¹³ C $R_{1\rho}$ experiments. HMA, BL, and AR wrote the manuscript with
859	critical input from HS.
860	
861	Competing interests. The authors declare that they have no conflict of interest.
862	
863	Acknowledgments. We thank Prof. Katja Petzold for sharing the ¹ H CEST pulse
864	sequence. We thank Dr. Or Szekely for general input and Ainan Geng for help

866

865

Financial Support. This work was supported by the US National Institutes of
 Health (R01GM089846) Grants to H.M.A.

with the ¹H inhomogeneity measurements.

869 Reference

- 870 Afek, A., Shi, H., Rangadurai, A., Sahay, H., Senitzki, A., Xhani, S., Fang, M., Salinas, R., Mielko,
- 871 Z., Pufall, M. A., Poon, G. M. K., Haran, T. E., Schumacher, M. A., Al-Hashimi, H. M., and Gordan,
- 872 R.: DNA mismatches reveal conformational penalties in protein-DNA recognition, Nature, 587, 291-
- 873 296, 10.1038/s41586-020-2843-2, 2020.
- Aishima, J., Gitti, R. K., Noah, J. E., Gan, H. H., Schlick, T., and Wolberger, C.: A Hoogsteen base pair embedded in undistorted B-DNA, Nucleic acids research, 30, 5244-5252, 2002.
- 876 Alvey, H. S., Gottardo, F. L., Nikolova, E. N., and Al-Hashimi, H. M.: Widespread transient
- Hoogsteen base pairs in canonical duplex DNA with variable energetics, Nat Commun, 5, 4786,
 10.1038/ncomms5786, 2014.
- 879 Baronti, L., Guzzetti, I., Ebrahimi, P., Friebe Sandoz, S., Steiner, E., Schlagnitweit, J., Fromm, B.,
- 880 Silva, L., Fontana, C., Chen, A. A., and Petzold, K.: Base-pair conformational switch modulates
- 881 miR-34a targeting of Sirt1 mRNA, Nature, 583, 139-144, 10.1038/s41586-020-2336-3, 2020.
- Ben Imeddourene, A., Zargarian, L., Buckle, M., Hartmann, B., and Mauffret, O.: Slow motions in
 A.T rich DNA sequence, Sci Rep, 10, 19005, 10.1038/s41598-020-75645-x, 2020.
- 884 Bothe, J. R., Stein, Z. W., and Al-Hashimi, H. M.: Evaluating the uncertainty in exchange 885 parameters determined from off-resonance R1rho relaxation dispersion for systems in fast
- 886 exchange, J Magn Reson, 244, 18-29, 10.1016/j.jmr.2014.04.010, 2014.
- 887 Bouvignies, G. and Kay, L. E.: Measurement of proton chemical shifts in invisible states of slowly 888 exchanging protein systems by chemical exchange saturation transfer, J Phys Chem B, 116, 14311-
- 889 14317, 10.1021/jp311109u, 2012.
- Burnham, K. P. and Anderson, D. R.: Multimodel inference understanding AIC and BIC in model
 selection, Sociol Method Res, 33, 261-304, 10.1177/0049124104268644, 2004.
- 892 Chen, B., LeBlanc, R., and Dayie, T. K.: SAM-II Riboswitch Samples at least Two Conformations in
- 893 Solution in the Absence of Ligand: Implications for Recognition, Angew Chem Int Edit, 55, 2724-
- 894 **2727**, 10.1002/anie.201509997, 2016.
- Coman, D. and Russu, I. M.: A nuclear magnetic resonance investigation of the energetics of
 basepair opening pathways in DNA, Biophys J, 89, 3285-3292, 10.1529/biophysj.105.065763,
 2005.
- 898 Czernek, J., Fiala, R., and Sklenar, V.: Hydrogen bonding effects on the (15)N and (1)H shielding
- 899 tensors in nucleic acid base pairs, J Magn Reson, 145, 142-146, 10.1006/jmre.2000.2091, 2000.
- Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A.: NMRPipe: a
 multidimensional spectral processing system based on UNIX pipes, J Biomol NMR, 6, 277-293,
 10.1007/BF00197809. 1995.
- 903 Dubini, R. C. A., Schon, A., Muller, M., Carell, T., and Rovo, P.: Impact of 5-formylcytosine on the
- 904 melting kinetics of DNA by 1H NMR chemical exchange, Nucleic Acids Res, 48, 8796-8807,
- 905 **10.1093/nar/gkaa589, 2020**.
- 906 Eichmuller, C. and Skrynnikov, N. R.: A new amide proton R1rho experiment permits accurate
- 907 characterization of microsecond time-scale conformational exchange, J Biomol NMR, 32, 281-293,

- 908 10.1007/s10858-005-0658-y, 2005.
- 909 Felsenfeld, G., Davies, D. R., and Rich, A.: Formation of a 3-Stranded Polynucleotide Molecule,
- 910 Journal of the American Chemical Society, 79, 2023-2024, DOI 10.1021/ja01565a074, 1957.
- 911 Frank, A. T., Horowitz, S., Andricioaei, I., and Al-Hashimi, H. M.: Utility of 1H NMR chemical shifts
- 912 in determining RNA structure and dynamics, J Phys Chem B, 117, 2045-2052, 10.1021/jp310863c,
- 913 **2013**.
- 914 Furukawa, A., Walinda, E., Arita, K., and Sugase, K.: Structural dynamics of double-stranded DNA
- 915 with epigenome modification, Nucleic Acids Res, 49, 1152-1162, 10.1093/nar/gkaa1210, 2021.
- 916 Golovenko, D., Brauning, B., Vyas, P., Haran, T. E., Rozenberg, H., and Shakked, Z.: New Insights
- 917 into the Role of DNA Shape on Its Recognition by p53 Proteins, Structure, 26, 1237-1250 e1236,
- 918 10.1016/j.str.2018.06.006, 2018.
- 919 Guenneugues, M., Berthault, P., and Desvaux, H.: A method for determining B1 field inhomogeneity.
- Are the biases assumed in heteronuclear relaxation experiments usually underestimated?, J Magn
 Reson, 136, 118-126, 10.1006/jmre.1998.1590, 1999.
- 922 $\,$ Gueron, M. and Leroy, J. L.: Studies of base pair kinetics by NMR measurement of proton exchange,
- 923 Methods Enzymol, 261, 383-413, 10.1016/s0076-6879(95)61018-9, 1995.
- Gueron, M., Kochoyan, M., and Leroy, J. L.: A single mode of DNA base-pair opening drives imino
 proton exchange, Nature, 328, 89-92, 10.1038/328089a0, 1987.
- Hansen, A. L., Lundstrom, P., Velyvis, A., and Kay, L. E.: Quantifying millisecond exchange
 dynamics in proteins by CPMG relaxation dispersion NMR using side-chain 1H probes, J Am Chem
 Soc, 134, 3178-3189, 10.1021/ja210711v, 2012.
- 929 Hansen, A. L., Nikolova, E. N., Casiano-Negroni, A., and Al-Hashimi, H. M.: Extending the range of
- 930 microsecond-to-millisecond chemical exchange detected in labeled and unlabeled nucleic acids by
- 931 selective carbon R(1rho) NMR spectroscopy, J Am Chem Soc, 131, 3818-3819, 10.1021/ja8091399,
 932 2009.
- 933 Hoogsteen, K.: The Structure of Crystals Containing a Hydrogen-Bonded Complex of 1-
- 934
 Methylthymine
 and
 9-Methyladenine,
 Acta
 Crystallogr,
 12,
 822-823,
 Doi

 935
 10.1107/S0365110x59002389, 1959.
 1059.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069.
 1069
- Hwang, T. L. and Shaka, A. J.: Water Suppression That Works Excitation Sculpting Using Arbitrary
 Wave-Forms and Pulsed-Field Gradients, J Magn Reson Ser A, 112, 275-279, DOI
 10.1006/jmra.1995.1047, 1995.
- 939 Ishima, R. and Torchia, D. A.: Extending the range of amide proton relaxation dispersion
 940 experiments in proteins using a constant-time relaxation-compensated CPMG approach, J Biomol
 941 NMR, 25, 243-248, 10.1023/a:1022851228405, 2003.
- 942 Ishima, R., Wingfield, P. T., Stahl, S. J., Kaufman, J. D., and Torchia, D. A.: Using amide H-1 and
- 943 N-15 transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins:
- 944 Application to HIV-1 protease, Journal of the American Chemical Society, 120, 10534-10542, DOI
- $945 \qquad \hbox{10.1021/ja981546c, 1998.}$
- Juen, M. A., Wunderlich, C. H., Nussbaumer, F., Tollinger, M., Kontaxis, G., Konrat, R., Hansen, D.

- 947 F., and Kreutz, C.: Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR
- 948 Spectroscopy, Angew Chem Int Ed Engl, 55, 12008-12012, 10.1002/anie.201605870, 2016.
- Kimsey, I. J., Petzold, K., Sathyamoorthy, B., Stein, Z. W., and Al-Hashimi, H. M.: Visualizing
 transient Watson-Crick-like mispairs in DNA and RNA duplexes, Nature, 519, 315-320,
- 951 **10.1038/nature14227, 2015**.
- 52 Kimsey, I. J., Szymanski, E. S., Zahurancik, W. J., Shakya, A., Xue, Y., Chu, C. C., Sathyamoorthy,
- 953 B., Suo, Z., and Al-Hashimi, H. M.: Dynamic basis for dG*dT misincorporation via tautomerization
- 954 and ionization, Nature, 554, 195-201, 10.1038/nature25487, 2018.
- 955 Kitayner, M., Rozenberg, H., Rohs, R., Suad, O., Rabinovich, D., Honig, B., and Shakked, Z.:
- Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs, Nat
 Struct Mol Biol, 17, 423-429, 10.1038/nsmb.1800, 2010.
- Lam, S. L. and Chi, L. M.: Use of chemical shifts for structural studies of nucleic acids, Prog Nucl
 Magn Reson Spectrosc, 56, 289-310, 10.1016/j.pnmrs.2010.01.002, 2010.
- 960 Lane, A. N., Bauer, C. J., and Frenkiel, T. A.: Determination of conformational transition rates in the
- trp promoter by 1H NMR rotating-frame T1 and cross-relaxation rate measurements, Eur Biophys
 J, 21, 425-431, 10.1007/BF00185870, 1993.
- LeBlanc, R. M., Longhini, A. P., Tugarinov, V., and Dayie, T. K.: NMR probing of invisible excited
 states using selectively labeled RNAs, J Biomol NMR, 71, 165-172, 10.1007/s10858-018-0184-3,
 2018.
- Leijon, M. and Graslund, A.: Effects of sequence and length on imino proton exchange and base
 pair opening kinetics in DNA oligonucleotide duplexes, Nucleic Acids Res, 20, 5339-5343,
 10.1093/nar/20.20.5339, 1992.
- Leroy, J. L., Kochoyan, M., Huynh-Dinh, T., and Gueron, M.: Characterization of base-pair opening
 in deoxynucleotide duplexes using catalyzed exchange of the imino proton, J Mol Biol, 200, 223238, 10.1016/0022-2836(88)90236-7, 1988.
- Ling, H., Boudsocq, F., Plosky, B. S., Woodgate, R., and Yang, W.: Replication of a cis-syn thymine
 dimer at atomic resolution, Nature, 424, 1083-1087, 10.1038/nature01919, 2003.
- 1974 Liu, B., Shi, H., Rangadurai, A., Nussbaumer, F., Chu, C. C., Erharter, K., Case, D. A., Kreutz, C.,
- and Al-Hashimi, H. M.: A quantitative model predicts how m6A reshapes the kinetic landscape of
 nucleic acid hybridization and conformational transitions, bioRxiv, 2020.
- 977 Lu, L., Yi, C., Jian, X., Zheng, G., and He, C.: Structure determination of DNA methylation lesions
- N1-meA and N3-meC in duplex DNA using a cross-linked protein-DNA system, Nucleic Acids Res,
 38, 4415-4425, 10.1093/nar/gkg129, 2010.
- 980 Lundstrom, P. and Akke, M.: Off-resonance rotating-frame amide proton spin relaxation
- 981 experiments measuring microsecond chemical exchange in proteins, J Biomol NMR, 32, 163-173,
- $982 \qquad {\tt 10.1007/s10858-005-5027-3,\,2005.}$
- 983 Lundstrom, P., Hansen, D. F., Vallurupalli, P., and Kay, L. E.: Accurate measurement of alpha proton
- 984 chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy, Journal of the
- 985 American Chemical Society, 131, 1915-1926, 10.1021/ja807796a, 2009.

986 Mcconnell, H. M.: Reaction Rates by Nuclear Magnetic Resonance, J Chem Phys, 28, 430-431,

- 987 Doi 10.1063/1.1744152, 1958.
- 988Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K.: Hoogsteen base pair989formation promotes synthesis opposite the 1,N6-ethenodeoxyadenosine lesion by human DNA
- 990 polymerase iota, Nat Struct Mol Biol, 13, 619-625, 10.1038/nsmb1118, 2006.
- 991 Nikolova, E. N., Gottardo, F. L., and Al-Hashimi, H. M.: Probing transient Hoogsteen hydrogen
- bonds in canonical duplex DNA using NMR relaxation dispersion and single-atom substitution, J
 Am Chem Soc, 134, 3667-3670, 10.1021/ja2117816, 2012a.
- 994 Nikolova, E. N., Bascom, G. D., Andricioaei, I., and Al-Hashimi, H. M.: Probing Sequence-Specific
- 995 DNA Flexibility in A-Tracts and Pyrimidine-Purine Steps by Nuclear Magnetic Resonance C-13
- Relaxation and Molecular Dynamics Simulations, Biochemistry, 51, 8654-8664, 10.1021/bi3009517,
 2012b.
- Nikolova, E. N., Goh, G. B., Brooks, C. L., 3rd, and Al-Hashimi, H. M.: Characterizing the
 protonation state of cytosine in transient G.C Hoogsteen base pairs in duplex DNA, J Am Chem
 Soc, 135, 6766-6769, 10.1021/ja400994e, 2013a.
- 1001 Nikolova, E. N., Kim, E., Wise, A. A., O'Brien, P. J., Andricioaei, I., and Al-Hashimi, H. M.: Transient
- 1002 Hoogsteen base pairs in canonical duplex DNA, Nature, 470, 498-502, 10.1038/nature09775, 2011.
- Nikolova, E. N., Zhou, H., Gottardo, F. L., Alvey, H. S., Kimsey, I. J., and Al-Hashimi, H. M.: A
 historical account of Hoogsteen base-pairs in duplex DNA, Biopolymers, 99, 955-968,
 1005 10.1002/bip.22334, 2013b.
- Otten, R., Villali, J., Kern, D., and Mulder, F. A.: Probing microsecond time scale dynamics in
 proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements.
 Application to activation of the signaling protein NtrC(r), J Am Chem Soc, 132, 17004-17014,
 10.1021/ja107410x, 2010.
- Palmer, A. G., 3rd: Chemical exchange in biomacromolecules: past, present, and future, J Magn
 Reson, 241, 3-17, 10.1016/j.jmr.2014.01.008, 2014.
- 1012Rangadurai, A., Shi, H., and Al-Hashimi, H. M.: Extending the Sensitivity of CEST NMR1013Spectroscopy to Micro-to-Millisecond Dynamics in Nucleic Acids Using High-Power Radio-
- $1014 \qquad \text{Frequency Fields, Angew Chem Int Ed Engl, 59, 11262-11266, 10.1002/anie.202000493, 2020a.}$
- 1015 $\,$ Rangadurai, A., Kremser, J., Shi, H., Kreutz, C., and Al-Hashimi, H. M.: Direct evidence for
- $1016 \qquad (G) O6...H2-N4(C)(+) \ hydrogen \ bonding \ in \ transient \ G(syn)-C(+) \ and \ G(syn)-m(5)C(+) \ Hoogsteen \ Single (Single (Single$
- base pairs in duplex DNA from cytosine amino nitrogen off-resonance R1rho relaxation dispersion
 measurements, J Magn Reson, 308, 106589, 10.1016/i.jmr.2019.106589, 2019a.
- 1019 Rangadurai, A., Szymaski, E. S., Kimsey, I. J., Shi, H., and Al-Hashimi, H. M.: Characterizing micro-
- 1020 to-millisecond chemical exchange in nucleic acids using off-resonance R1rho relaxation dispersion,
- 1021 Prog Nucl Magn Reson Spectrosc, 112-113, 55-102, 10.1016/j.pnmrs.2019.05.002, 2019b.
- 1022 Rangadurai, A., Shi, H., Xu, Y., Liu, B., Abou Assi, H., Zhou, H., Kimsey, I., and Al-Hashimi, H.:
- 1023 delta-Melt: Nucleic acid conformational penalties from melting experiments, bioRxiv, 2020b.
- 1024 Rangadurai, A., Zhou, H., Merriman, D. K., Meiser, N., Liu, B., Shi, H., Szymanski, E. S., and Al-

- $1025 \qquad \text{Hashimi, H. M.: Why are Hoogsteen base pairs energetically disfavored in A-RNA compared to B-}$
- 1026 DNA?, Nucleic Acids Res, 46, 11099-11114, 10.1093/nar/gky885, 2018.
- Sathyamoorthy, B., Lee, J., Kimsey, I., Ganser, L. R., and Al-Hashimi, H.: Development and
 application of aromatic [(13)C, (1)H] SOFAST-HMQC NMR experiment for nucleic acids, J Biomol
 NMR, 60, 77-83, 10.1007/s10858-014-9856-9, 2014.
- 1030 Sathyamoorthy, B., Shi, H., Zhou, H., Xue, Y., Rangadurai, A., Merriman, D. K., and Al-Hashimi, H.
- $1031 \qquad \text{M.: Insights into Watson-Crick/Hoogsteen breathing dynamics and damage repair from the solution}$
- 1032 structure and dynamic ensemble of DNA duplexes containing m1A, Nucleic Acids Res, 45, 5586-
- 1033 5601, 10.1093/nar/gkx186, 2017.
- Schlagnitweit, J., Steiner, E., Karlsson, H., and Petzold, K.: Efficient Detection of Structure and
 Dynamics in Unlabeled RNAs: The SELOPE Approach, Chemistry, 24, 6067-6070,
 10.1002/chem.201800992, 2018.
- 1037 Schnieders, R., Wolter, A. C., Richter, C., Wohnert, J., Schwalbe, H., and Furtig, B.: Novel (13) C-
- detected NMR Experiments for the Precise Detection of RNA Structure, Angew Chem Int Ed Engl,58, 9140-9144, 10.1002/anie.201904057, 2019.
- 1040 Sekhar, A., Rosenzweig, R., Bouvignies, G., and Kay, L. E.: Hsp70 biases the folding pathways of 1041 client proteins, Proc Natl Acad Sci U S A, 113, E2794-2801, 10.1073/pnas.1601846113, 2016.
- 1042 Shi, H., Clay, M. C., Rangadurai, A., Sathyamoorthy, B., Case, D. A., and Al-Hashimi, H. M.: Atomic
- 1043 structures of excited state A-T Hoogsteen base pairs in duplex DNA by combining NMR relaxation
- dispersion, mutagenesis, and chemical shift calculations, J Biomol NMR, 70, 229-244,1045 10.1007/s10858-018-0177-2, 2018.
- Shi, H., Kimsey, I., Liu, H., Pham, U., Schumacher, M. A., and Al-Hashimi, H.: Revealing A-T and
 G-C Hoogsteen base pairs in stressed protein-bound duplex DNA, bioRxiv, 2021.
- 1048Shi, H., Liu, B., Nussbaumer, F., Rangadurai, A., Kreutz, C., and Al-Hashimi, H. M.: NMR Chemical1049Exchange Measurements Reveal That N(6)-Methyladenosine Slows RNA Annealing, J Am Chem1050Annealing, J Am Chem
- 1050 Soc, 141, 19988-19993, 10.1021/jacs.9b10939, 2019.
- 1051 Singh, U. S., Moe, J. G., Reddy, G. R., Weisenseel, J. P., Marnett, L. J., and Stone, M. P.: 1H NMR
- 1052 of an oligodeoxynucleotide containing a propanodeoxyguanosine adduct positioned in a (CG)3
- frameshift hotspot of Salmonella typhimurium hisD3052: Hoogsteen base-pairing at pH 5.8, Chem
 Res Toxicol, 6, 825-836, 10.1021/tx00036a012, 1993.
- Smith, C. A., Ban, D., Pratihar, S., Giller, K., Schwiegk, C., de Groot, B. L., Becker, S., Griesinger,
 C., and Lee, D.: Population shuffling of protein conformations, Angew Chem Int Ed Engl, 54, 207-
- 1057 **210**, 10.1002/anie.201408890, 2015.
- Snoussi, K. and Leroy, J. L.: Imino proton exchange and base-pair kinetics in RNA duplexes,Biochemistry, 40, 8898-8904, 10.1021/bi010385d, 2001.
- 1060 Sripakdeevong, P., Cevec, M., Chang, A. T., Erat, M. C., Ziegeler, M., Zhao, Q., Fox, G. E., Gao,
- 1061 X., Kennedy, S. D., Kierzek, R., Nikonowicz, E. P., Schwalbe, H., Sigel, R. K., Turner, D. H., and
- 1062 Das, R.: Structure determination of noncanonical RNA motifs guided by (1)H NMR chemical shifts,
- 1063 Nature methods, 11, 413-416, 10.1038/nmeth.2876, 2014.

1064 Steiner, E., Schlagnitweit, J., Lundstrom, P., and Petzold, K.: Capturing Excited States in the Fast-

- 1065 Intermediate Exchange Limit in Biological Systems Using (HNMR)-H-1 Spectroscopy, Angew 1066 Chem Int Edit, 55, 15869-15872, 10.1002/anie.201609102, 2016.
- 1067 Stelling, A. L., Xu, Y., Zhou, H., Choi, S. H., Clay, M. C., Merriman, D. K., and Al-Hashimi, H. M.:
- 1068 Robust IR-based detection of stable and fractionally populated G-C(+) and A-T Hoogsteen base
- 1069 pairs in duplex DNA, FEBS Lett, 591, 1770-1784, 10.1002/1873-3468.12681, 2017.
- 1070 Swails, J., Zhu, T., He, X., and Case, D. A.: AFNMR: automated fragmentation quantum mechanical
- 1071 calculation of NMR chemical shifts for biomolecules, Journal of biomolecular NMR, 63, 125-139,
- 1072 10.1007/s10858-015-9970-3, 2015.
- 1073 Tateishi-Karimata, H., Nakano, M., and Sugimoto, N.: Comparable stability of Hoogsteen and
 1074 Watson-Crick base pairs in ionic liquid choline dihydrogen phosphate, Sci Rep, 4, 3593,
 1075 10.1038/srep03593, 2014.
- 1076 Ughetto, G., Wang, A. H., Quigley, G. J., van der Marel, G. A., van Boom, J. H., and Rich, A.: A
- 1077 comparison of the structure of echinomycin and triostin A complexed to a DNA fragment, Nucleic1078 Acids Res, 13, 2305-2323, 10.1093/nar/13.7.2305, 1985.
- Wang, A. H., Ughetto, G., Quigley, G. J., Hakoshima, T., van der Marel, G. A., van Boom, J. H., and
 Rich, A.: The molecular structure of a DNA-triostin A complex, Science, 225, 1115-1121,
 10.1126/science.6474168, 1984.
- Wang, S., Song, Y., Wang, Y., Li, X., Fu, B., Liu, Y., Wang, J., Wei, L., Tian, T., and Zhou, X.: The
 m(6)A methylation perturbs the Hoogsteen pairing-guided incorporation of an oxidized nucleotide,
 Chem Sci, 8, 6380-6388, 10.1039/c7sc02340e, 2017.
- Wang, Y., Han, G., Jiang, X., Yuwen, T., and Xue, Y.: Chemical shift prediction of RNA imino groups:
 application toward characterizing RNA excited states, Nat Commun, 12, 1595, 10.1038/s41467021-21840-x, 2021.
- Wang, Y. S. and Ikuta, S.: Proton on-Resonance Rotating Frame Spin-Lattice Relaxation
 Measurements of B and Z Double-Helical Oligodeoxyribonucleotides in Solution, Journal of the
 American Chemical Society, 111, 1243-1248, DOI 10.1021/ja00186a013, 1989.
- Weininger, U., Liu, Z., McIntyre, D. D., Vogel, H. J., and Akke, M.: Specific
 12CbetaD(2)12CgammaD(2)S13CepsilonHD(2) isotopomer labeling of methionine to characterize
 protein dynamics by 1H and 13C NMR relaxation dispersion, J Am Chem Soc, 134, 18562-18565,
- 1094 10.1021/ja309294u, 2012.
- 1095 Weininger, U., Blissing, A. T., Hennig, J., Ahlner, A., Liu, Z., Vogel, H. J., Akke, M., and Lundstrom,
- P.: Protein conformational exchange measured by 1H R1rho relaxation dispersion of methyl groups,
 J Biomol NMR, 57, 47-55, 10.1007/s10858-013-9764-4, 2013.
- 1098 $\,$ Xu, Y., McSally, J., Andricioaei, I., and Al-Hashimi, H. M.: Modulation of Hoogsteen dynamics on
- 1099 DNA recognition, Nat Commun, 9, 1473, 10.1038/s41467-018-03516-1, 2018.
- 1100 Xu, Y., Manghrani, A., Liu, B., Shi, H., Pham, U., Liu, A., and Al-Hashimi, H. M.: Hoogsteen base
- 1101 pairs increase the susceptibility of double-stranded DNA to cytotoxic damage, J Biol Chem, 295,
- 1102 15933-15947, 10.1074/jbc.RA120.014530, 2020.

- Yamazaki, T., Muhandiram, R., and Kay, L. E.: NMR Experiments for the Measurement of Carbon
 Relaxation Properties in Highly Enriched, Uniformly 13C,15N-Labeled Proteins: Application to
 13C.alpha. Carbons, Journal of the American Chemical Society, 116, 8266-8278,
 10.1021/ja00097a037, 1994.
- 1107Yuwen, T., Sekhar, A., and Kay, L. E.: Separating Dipolar and Chemical Exchange Magnetization1108Transfer Processes in (1) H-CEST, Angew Chem Int Ed Engl, 56, 6122-6125,
- 1109 10.1002/anie.201610759, 2017a.
- 1110 Yuwen, T. R., Huang, R., and Kay, L. E.: Probing slow timescale dynamics in proteins using methyl
- 1111 H-1 CEST, Journal of Biomolecular Nmr, 68, 215-224, 10.1007/s10858-017-0121-x, 2017b.
- 1112 Zhao, B., Hansen, A. L., and Zhang, Q.: Characterizing slow chemical exchange in nucleic acids
- by carbon CEST and low spin-lock field R(1rho) NMR spectroscopy, J Am Chem Soc, 136, 20-23,
 10.1021/ja409835y, 2014.
- 1115 Zhou, H., Sathyamoorthy, B., Stelling, A., Xu, Y., Xue, Y., Pigli, Y. Z., Case, D. A., Rice, P. A., and
- $1116 \qquad \hbox{Al-Hashimi, H. M.: Characterizing Watson-Crick versus Hoogsteen Base Pairing in a DNA-Protein}$
- 1117 Complex Using Nuclear Magnetic Resonance and Site-Specifically (13)C- and (15)N-Labeled DNA,
- $1118 \qquad \hbox{Biochemistry, 58, 1963-1974, 10.1021/acs.biochem.9b00027, 2019.}$
- 1119 Zhou, H., Kimsey, I. J., Nikolova, E. N., Sathyamoorthy, B., Grazioli, G., McSally, J., Bai, T.,
- 1120 Wunderlich, C. H., Kreutz, C., Andricioaei, I., and Al-Hashimi, H. M.: m(1)A and m(1)G disrupt A-
- 1121 RNA structure through the intrinsic instability of Hoogsteen base pairs, Nature structural &
- 1122 molecular biology, 23, 803-810, 10.1038/nsmb.3270, 2016.
- 1123 \qquad Zimmer, D. P. and Crothers, D. M.: NMR of enzymatically synthesized uniformly 13C15N-labeled
- 1124 DNA oligonucleotides, Proc Natl Acad Sci U S A, 92, 3091-3095, 10.1073/pnas.92.8.3091, 1995.
- 1125